

SOLDAGEM A ARCO ELÉTRICO SOB PROTEÇÃO GASOSA

Rev. 07/2014-V2

1 - FUNDAMENTOS DO PROCESSO

O processo de soldagem a arco sob proteção gasosa consiste em um aquecimento localizado da região a se unir, até que esta atinja o ponto de fusão, formando-se então a poça de metal líquido, que receberá o metal de adição também na forma fundida.

A energia necessária para fundir tanto o metal base quanto o metal de adição, é fornecida pelo arco elétrico. No arco elétrico temos cargas elétricas fluindo entre dois eletrodos através de uma coluna de gás ionizado como mostra a figura nº1.

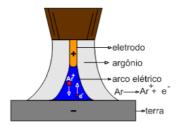


Figura nº1: arco elétrico utilizando o argônio como gás de ionização.

Para isolar a região de soldagem dos contaminantes atmosféricos (nitrogênio, oxigênio e umidade), que prejudicam as propriedades mecânicas da junta, são utilizados gases de proteção com características químico-físicas específicas que também ajudam a formar e manter o arco elétrico estável. A altura do arco elétrico é controlada pela diferença de potencial (voltagem) aplicada entre os eletrodos, no caso do processo MIG-MAG, ou pela distância eletrodo peça no caso do processo TIG, e sua intensidade pela corrente elétrica (amperagem) que se faz fluir através da coluna de gás ionizado (plasma).

2 - O PROCESSO MIG/MAG

O processo MIG/MAG é considerado um processo semiautomático de soldagem, pois utiliza como metal de adição o arame eletrodo de alimentação contínua, onde o soldador deve apenas controlar a velocidade de avanço durante as operações de soldagem, mantendo-se constante a distância do bico de contato a peça.

Além do arame, são utilizados gases inertes ou ativos para proteger a região de solda. A figura nº2 ilustra o processo e a nº3 os equipamentos utilizados.

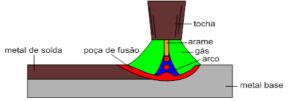


Figura n°2: esquema do processo MIG/MAG.

Figura n°3: equipamentos utilizados no processo MIG/MAG.

Neste processo, a fonte de energia fornece tensão (voltagem) constante e corrente (amperagem) contínua.

O ajuste da amperagem é feito variando-se a velocidade de alimentação do arame. Quanto maior esta velocidade, maior a corrente que a fonte fornece para fundir o arame eletrodo.

O ajuste da tensão é feito na fonte, e esta variável é que vai fornecer a energia necessária para gerar uma quantidade de corrente compatível com a velocidade de arame selecionada.

Para uma tensão de trabalho definida, existe uma velocidade de arame que torna o arco e a transferência metálica mais estáveis com pouca geração de respingos.

No processo MIG/MAG trabalha-se com polaridade reversa, isto é, o arame eletrodo ligado na polaridade positiva e a peça-obra ligada na polaridade negativa.

3 - FONTES DE ENERGIA NO PROCESSO MIG/MAG

Atualmente existem dois tipos básicos de fonte de soldagem para o processo MIG/MAG: as fontes convencionais e as fontes pulsadas.

As fontes convencionais fornecem corrente contínua cujo valor é praticamente constante no decorrer do tempo. Sua principal característica é a autorregulagem do arco elétrico com a variação da distância do bico de contato a peça, como mostra a figura nº4.

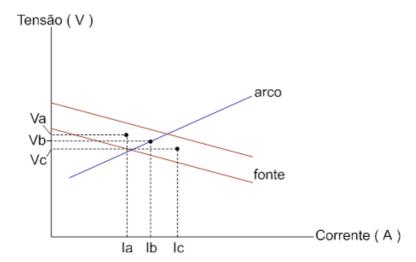


Figura nº4: autorregulagem das fontes convencionais.

A reta em vermelho mostra a faixa de trabalho da fonte e a azul a do arco elétrico, que depende do gás de proteção utilizado. No ponto b temos uma corrente lb e uma tensão Vb. Se o soldador aumentar a distância bico - peça, a resistência elétrica aumenta pelo aumento do comprimento do arame após o bico de contato. Isto faz com que a corrente caia para o valor la e automaticamente a tensão passa para o valor Va, mantendo o arco estável. De outro modo, com a aproximação do bico a corrente passa para o valor lc pela queda da resistência elétrica e a tensão diminui para Vc.

Logicamente estas variações tem limitação pois os novos pontos estão se distanciando da reta de trabalho do arco elétrico e dependendo da intensidade desta variação o arco não ficara estável.

As fontes pulsadas fornecem corrente contínua, mas sua intensidade varia no decorrer do tempo como mostra a figura nº5.

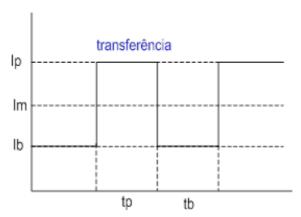


Figura nº5: variação da corrente de soldagem em função do tempo.

Nestas fontes temos dois níveis de corrente: Ip que é a corrente de pico e lb que é a corrente base. Estas correntes atuam nos tempos tp e tb respectivamente.

A transferência metálica é feita em spray e a gota é transferida nos picos de corrente Ip. Deste modo, o arco elétrico permanece sempre acesso num nível médio de energia (corrente média Im).

Estas fontes propiciam soldas de alta qualidade mecânica e ótimo acabamento, sendo indicadas para soldagem do alumínio, aços inoxidáveis e aços ao carbono onde a responsabilidade da estrutura a ser soldada e muito alta, como na soldagem de vasos de pressão.

4 - GASES DE PROTEÇÃO

Os gases de proteção utilizados no processo MIG/MAG tem a função de proteger a poça de fusão dos contaminantes do ar atmosféricos e proporcionar a estabilidade do arco elétrico.

Quando se utiliza gases inertes o processo denomina-se processo MIG (Metal Inert Gas). Os gases inertes mais utilizados são: Argônio (Ar), Hélio (He), e Nitrogênio (N2) ou misturas entre eles, porém o Hélio e o Nitrogênio, mesmo sendo considerados gases inertes, tem a capacidade de potencializar

o Arco Elétrico em algumas situações, propiciando maiores penetrações que quando se usa o Argônio puro, a exemplo de soldagem de alumínio e suas ligas, quando o material base tem elevada espessuras (Considerar espessuras maiores que 1" uma polegada).

Quando se utiliza gases ativos o processo denomina-se processo MAG (Metal Active Gas). Os gases ativos mais utilizados são: dióxido de carbono (CO2), mistura de argônio com dióxido de carbono, argônio com oxigênio (O2) e misturas de argônio com dióxido de carbono e oxigênio.

O silicato de manganês formado possui ponto de fusão e densidade inferior ao metal de solda, permanecendo na superfície do cordão de solda. Em soldagem multipasse não é necessário, na maioria das vezes, retirarmos esta escória formada dos cordões anteriores.

Os gases de proteção influenciam:

Penetração:

O CO2 "puro" pode ser usado na soldagem, obtemos ai processo MAG, empregado para soldagem de metais ferrosos, normalmente solicitado na soldagem de espessuras acima de 4mm.

Como maior ponto positivo destaca-se o custo do gás, que comparativamente é bem mais barato, e as taxas de penetração, que são bem maiores quando comparadas as chamadas "Misturas", que normalmente são compostas CO2, com 8 a 30% "balanço" em Argônio, ou seja, o que falta para 100% do volume do cilindro de Argônio, ou o mesmo raciocínio com uso O2 + Argônio, ambos que proporcionam menores taxas de respingos, se comparado ao CO2 "puro".

Porém com uso das "Misturas" normalmente se obtém menores taxas de penetração, por serem normalmente ricas em Argônio, considerando transferência por curto circuito. Já em transferência tipo spray, devido ao alto nível de energia do arco elétrico, as misturas ricas em argônio também produzem penetrações elevadas, e normalmente aumento de produtividade, por proporcionarem maior velocidade no processo de soldagem.

Quantidade de respingos:

Os respingos com misturas a base de argônio são menores e em quantidade inferior quando comparados ao CO2. Quando se utiliza misturas ricas em argônio (85% ou mais de argônio) e em transferência em spray, a quantidade de respingos é desprezível.

Acabamento:

Para baixo nível de energia, o acabamento dos cordões de solda é semelhante.

Já para correntes elevadas, as misturas a base de argônio produzem melhor acabamento em relação ao CO2.

Queima de elementos de liga:

A queima de elementos de liga depende do nível de corrente da operação de soldagem. Para um mesmo nível de amperagem quanto maior a porcentagem de argônio menor a queima de elementos de liga.

Velocidade de soldagem:

Quanto menor o teor de CO2 maior a velocidade de soldagem (produtividade). A adição de oxigênio (5% no máximo) ao argônio puro resulta em misturas de altíssima produtividade.

Tipo de transferência metálica:

Mais adiante nesta apostila detalharemos este item.

5 - ARAMES PARA A SOLDAGEM MIG/MAG

Os arames para a soldagem MIG/MAG são sólidos e com diâmetro de 0,6 a 1,6 mm. Com o mesmo equipamento usado na soldagem MIG/MAG, pode-se utilizar arames tubulares com diâmetro de até 2,4 mm. Estes arames possuem em seu interior um fluxo semelhante ao utilizados em eletrodos revestidos. Esta característica tem como objetivo aumentar a produtividade e produzir metais de solda com propriedades físico-químicas bem específicas, ampliando o campo de aplicação dos equipamentos do processo.

Atualmente existe uma gama muito grande de tipos de arame para o processo, que seguem especificações como as ditadas pela AWS (Sociedade Americana de Soldagem), uma das mais utilizadas.

Mundialmente encontra-se arames para a soldagem dos seguintes materiais: aços ao carbono, aços baixa liga, aços inoxidáveis, ferro fundido, cobre e suas ligas, alumínio e suas ligas, níquel e suas ligas, titânio e suas ligas e soldagem de revestimento (para o processo com arame tubular).

Os arames são especificados pela sua composição química ou como no exemplo abaixo, onde é mostrada a especificação de arames sólidos destinados à soldagem de aço carbono.

Exemplo: arame ER 70 S 6, onde,

- •ER indica que o arame pode ser usado como eletrodo e vareta;
- •70 indica o limite de resistência a tração em 1.000 psi que neste caso seria de 70.000 psi ou 49,2 kgf/mm;

- •S indica arame sólido;
- •6 dígito relativo à composição química.

O tipo de embalagem (embalagem à vácuo), e o bobinamento (bobinamento capa a capa) são fatores importantes, para manter a integridade do produto até sua colocação em uso, e garantir uma perfeita alimentação de material de adição em meio a soldagem, estes dois diferenciais muitas vezes garantem uma melhor estabilidade de arco elétrico, consequentemente melhor performance de penetração no processo de soldagem MIG-MAG, e claro maior conforto e confiança, ao soldador na execução do trabalho.

6 - TRANSFERÊNCIA METÁLICA NO PROCESSO MIG/MAG

Existem três tipos básicos de transferência metálica neste processo, que dependem do tipo de gás de proteção utilizado, nível de energia (corrente/tensão), diâmetro e tipo do arame de adição e tipo de metal base.

Transferência por curto circuito:

Transferência alcançada com qualquer tipo de gás de proteção a um baixo nível de corrente/tensão. A ponta do arame vai se fundindo pela ação do arco elétrico e aumenta de tamanho até atingir a peça, onde o arco se extingue. A gota então é destacada e transferida a peça pela ação de forças eletromagnéticas e o efeito pinch que estrangula a ponta do arame. Neste momento ocorre a reignição do arco elétrico onde a corrente atinge o valor de corrente de curto circuito gerando os respingos.

A figura nº6 ilustra o processo de transferência por curto circuito.

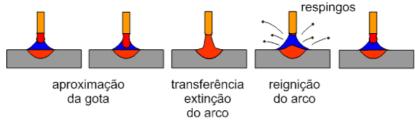


Figura nº6: transferência por curto circuito.

Este tipo de transferência permite a soldagem em todas as posições e possui uma energia relativamente baixa, restringindo o seu uso para grandes espessuras.

A utilização de misturas a base de argônio proporciona boa estabilidade de arco e gotas pequenas minimizando a projeção de respingos.

Transferência globular:

Tipo de transferência obtida com nível de energia maior que no caso anterior. Misturas a base de argônio com menos de 15% de CO2 possuem uma pequena faixa de trabalho em regime globular, passando para spray com o aumento da energia de soldagem. Já, misturas com mais de 25% de CO2 ou CO2 puro não entram em spray, permanecendo em regime globular com o aumento da energia de soldagem.

Nesta transferência, o metal se projeta por gotas de diâmetro bem maior que o diâmetro do arame, principalmente quando se utiliza o gás CO2 como gás de proteção. Com isto, temos uma geração excessiva de respingos. A figura nº7 mostra o processo de transferência globular.

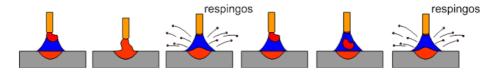


Figura nº7: transferência globular.

Com este tipo de transferência pode-se trabalhar somente na posição plana devido ao grande volume da gota e a alta fluidez da poça de fusão como mostra a figura nº8.

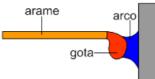
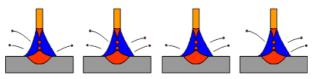


Figura nº8: transferência globular fora de posição.

Transferência em spray:


Tipo de transferência que também necessita de alta energia de soldagem.

O metal é transferido por pequenas gotículas que são arremessadas a peça por forças eletromagnéticas muito fortes. Apesar da intensidade destas forças, só se pode utilizar este tipo de transferência na posição plana e em alguns casos na horizontal, pois a poça de fusão é muito fluida devido a alta energia envolvida no processo.

A transferência em spray não é alcançada quando se utiliza o CO2 puro ou misturas com mais de 15% de CO2 como gás de proteção.

Utilizando-se então misturas a base de argônio com menos de 15% de CO2 ou misturas de argônio com oxigênio, obtém-se a transferência em spray que proporciona alta taxa de deposição (produtividade), grande penetração com pouquíssima geração de respingos, já que o arco elétrico não apaga.

o arco elétrico não extingue

Figura nº9: transferência em spray - o arco não extingue, pois o arame não toca a peça. Obs: A utilização de fontes pulsadas permite a soldagem fora de posição com este tipo de transferência.

7 - VARIÁVEIS DO PROCESSO E SUAS INFLUÊNCIAS

Corrente elétrica (amperagem):

Esta variável é controlada pela velocidade do arame, um aumento na velocidade do arame, implica em maior quantidade de eletrodo a ser fundido. Maior quantidade de corrente de soldagem é automaticamente fornecida pela fonte e vice-versa. A principal influência desta variável está no controle da penetração de solda. A figura 10 mostra o aumento da penetração com o aumento da corrente (amperagem), ou seja, da velocidade do arame para um mesmo valor de tensão (voltagem).

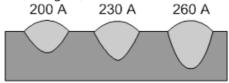


Figura nº10: influência da corrente de soldagem na penetração de solda.

Por esta figura observa-se também a influência da velocidade do arame no perfil do cordão de solda.

Tensão (voltagem):

Esta variável controla o tamanho do arco elétrico. Um aumento da voltagem provoca um acréscimo na altura e no diâmetro do cone do arco, como mostra a figura abaixo.

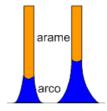


Figura nº11: influência da tensão no arco elétrico.

Com o aumento do arco elétrico, uma maior área do metal de solda é aquecida resultando num cordão mais largo e mais baixo pelo aumento da fluidez da poça de fusão.

A figura nº12 ilustra este fato.

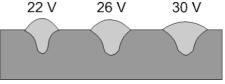


Figura nº12: influência da tensão no perfil do cordão de solda.

- Velocidade de avanço (velocidade de soldagem):

Esta variável também influencia a penetração de solda. Para uma velocidade muito alta de soldagem, o arco não permanece tempo suficiente na região de solda para proporcionar uma boa fusão e penetração do cordão. Já para uma velocidade baixa, a penetração aumenta mas, para uma velocidade excessivamente baixa de soldagem, o próprio metal fundido na poça funciona como isolante térmico para a transferência de calor do arco para o metal base, prejudicando também a penetração de solda.

0,30m/min 0,40m/min 0,50m/min

Figura nº13: influência da velocidade de soldagem na penetração de solda.

Extensão do eletrodo (stick out):

Definimos como extensão do eletrodo, a distância da extremidade do bico de contato a peça obra, como indicado na figura n-º 14, incluindo a altura do arco elétrico pois na prática não se mede este valor.

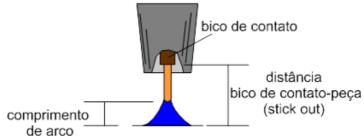


Figura nº 14: extensão do eletrodo.

Com o aumento da extensão do eletrodo temos uma queda na amperagem e uma elevação na voltagem de serviço. Uma menor quantidade de corrente é necessária para fundir o arame devido ao aquecimento do mesmo pelo aumento da resistência elétrica do circuito. Portanto, aumentando-se o stick out, aumentamos a taxa de fusão do arame e viceversa.

A figura nº15 mostra a variação da corrente e da tensão em função da altura do bico de contato.

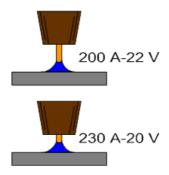


Figura nº 15: influência da extensão do eletrodo nas variáveis do processo.

Inclinação da tocha:

Esta é outra variável que tem influência sobre a penetração de solda. De acordo com a figura a seguir, soldando-se com inclinação positiva (puxando a solda), o arco elétrico atua diretamente sobre a poça de fusão, aumentando a penetração. Já, no sentido negativo (empurrando a solda), o arco elétrico permanece sobre o metal de base frio, reduzindo a penetração da solda. Como esta variável influencia a corrente elétrica, algumas variações na penetração de solda são observadas.

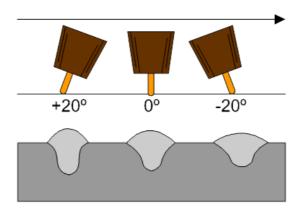


Figura nº16: influência da inclinação da tocha no perfil e penetração do cordão de solda.

A inclinação positiva (puxando a solda) é indicada para a soldagem de chapas galvanizadas ou com oxidação excessiva.

A inclinação negativa (empurrando a solda) é indicada para a soldagem do alumínio e suas ligas.

A inclinação da tocha não deve ser superior a 20°, pois um ângulo maior que este valor pode comprometer a proteção gasosa, além de tornar o arco instável e aumentar a quantidade de respingos. Indutância:

Variável que reduz a quantidade de respingos durante a transferência por curto circuito.

A indutância age sobre o pico de corrente de curto circuito, retardando o tempo em que esta atinge o seu valor máximo. Desta maneira, o arco elétrico reascende com menos violência reduzindo a quantidade de respingos como mostra a figura abaixo.

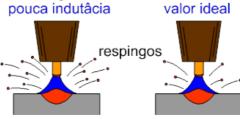


Figura nº 17: influência da indutância na quantidade de respingos durante a transferência por curto circuito.

Vazão de gás:

A vazão de gás é responsável pela proteção adequada da poça de fusão, garantindo soldas isentas de porosidade. O seu valor ideal depende do metal a ser soldado, das condições do ambiente em relação a ventilação e do nível de amperagem utilizado.

Logicamente, em função destes fatores, quanto menor o seu valor maior a economia de gás no processo de soldagem.

8 - DADOS DE SOLDAGEM EM FUNÇÃO DO DIÂMETRO DO ARAME

As tabelas abaixo são relativas a soldagem de aços carbono com arame ER 70 S 6.

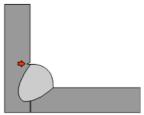
A tabela A relaciona as faixas de corrente utilizáveis em função do diâmetro do arame.

TABELA A		
Diâmetro do arame (mm)	Faixa de Corrente (A)	
0,8	50 - 220	
0,9	60 - 260	
1,0	80 - 300	
1,2	100 - 340	

A tabela B indica a faixa típica de corrente e velocidade de alimentação do arame para transferência em curto - circuito (utilizando mistura com 25% de CO2 em argônio como gás de proteção, ou menor que).

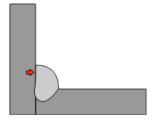
TABELA B		
Diâmetro do arame (mm)	Faixa de corrente (A)	Faixa de velocidade de alimen- tação do arame (m/min)
0,8	60 - 160	0,90 - 10,40
0,9	80 - 200	1,00 - 11,40
1,2	120 - 230	1,80 - 7,20

Obs: Para um mesmo nível de corrente, a utilização de arames de menor diâmetro proporciona maior taxa de deposição com pouca geração de respingos.



A tabela C (próxima página) indica a corrente mínima para transferência em spray (utilizando o gás de proteção CO2, "puro" não se obtém transferência por spray, necessita-se de misturas ricas em Argônio para tanto).

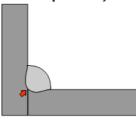
TABELA C		
Diâmetro do arame (mm)	Corrente mínima para spray (A)	
0,8	150	
0,9	165	
1,0	220	
1,2	240	

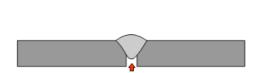

9- DEFEITOS DE SOI DAGEM E SUAS PROVÁVEIS CAUSAS

Mordedura:

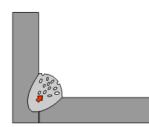
- alta velocidade de soldagem;
- alta voltagem do arco;
- manuseio inadequado da tocha.

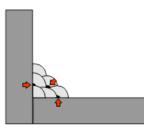
Falta de fusão:



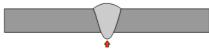


- cordão muito convexo em soldagem multipasse;
- baixa energia de soldagem;
- alta energia de soldagem para a posição vertical descendente;
- junta inadequada;
- manuseio inadequado da tocha.

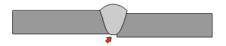

Falta de penetração:


- baixa energia de soldagem; - velocidade alta de soldagem; - junta inadequada.

Porosidade:

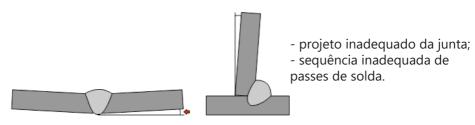

- vazão inadequada de gás: muito alta ou baixa;
- superfície com impurezas (tinta, óleo, graxa, umidade, carepa...);
- alta voltagem de soldagem.

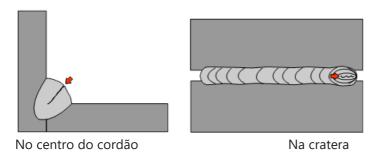
Inclusão de escória:

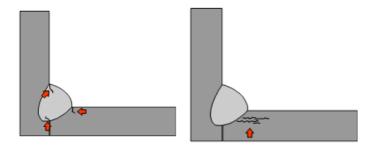

- superfície com carepa ou oxidação excessiva;
- escória nos cantos de cordões de solda muito convexos;
- escória ancorada em mordeduras.

Excesso de penetração:

- amperagem muito alta;
- grande abertura da raiz;
- não utilização de cobre junta.

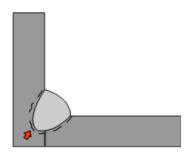

Desalinhamento:


- montagem incorreta da junta;
- distorções durante a fabricação.


Distorções:

Trincas de solidificação:

- profundidade de penetração excessiva;
- junta com grande abertura;
- metal base com alto teor de impurezas;
- pouco reforço na cratera;
- junta com alto grau de restrição.



Trincas induzidas pelo hidrogênio:

- presença de hidrogênio no metal de solda, aço com alto teor de carbono equivalente e junta com restrição.

Decoesão lamelar:

- inclusões no metal base no sentido da laminação;
- junta com alto grau de restrição.

Trincas de liquefação do ZTA.

- metal base com impurezas;
- alto aporte térmico.

10 - CARACTERÍSTICAS DO PROCESSO

- Processo de alta taxa de deposição (alta produtividade): 6,0 kg/hora com arame sólido e 12 kg/hora com arame tubular;
- Solda em todas as posições;
- Solda a maioria dos metais:
- Pouca geração de fumos;
- Bom acabamento, principalmente com a utilização de misturas a base de argônio;
- O processo é facilmente automatizado.

11 - SEGURANÇA

Devido o soldador estar sujeito a itens agressivos como os respingos de solda, radiações ultravioleta e infravermelha, fumos em ambientes fechados, queimaduras por peças quentes e choques elétricos, para sua proteção é indispensável a utilização de EPI completo indicado para o processo, ou seja: máscara com lente apropriada (em função da amperagem utilizada de acordo com a tabela abaixo), luvas, perneiras, avental, mangotes, sapato e óculos de segurança como mostra a figura seguinte.

Corrente (A)	Lente escura nº
60 - 160	11
160 - 250	12
250 - 500	14

Obs: Vale lembrar que a sensibilidade de cada pessoa, varia de uma para outra, ou seja o soldador ao soldar não pode nunca sentir os olhos irritados, durante ou pós soldagem, se isto estiver ocorrendo, indica que a lente-filtro esta fraca

para a aplicação em questão, versus a sensibilidade do usuário. Para soldagens onde se exige constante movimentação da cabeça do soldador, e precisão na soldagem, a exemplo passes de raiz em tubulações, etc. foram desenvolvidas as máscaras de solda chamadas foto sensíveis, digitais ou automáticas, que conseguem com uso de cristal liquido e sensores, escurecer a lente e proteger a visão do soldador em uma fração de milésimo de segundo.

Sumig Matriz

Av. Ângelo Corsetti, 1281 Caxias do Sul - RS | 95042-000 Fone/Fax: (54) 3220 3900 sumig@sumig.com

Filial SP

Alameda Vênus, 360 American Park Empresarial NR Indaiatuba - SP | 13347-659 (19) 4062 8900 / filialsp@sumig.com